(PART-1)
To the reef aquarium hobbyist, one of the rudest of surprises is to be confronted with an aggressive outbreak of 'bubble algae' in the tank. In the right conditions, they multiply and spread rapidly, offering good resistance to many herbivores, while threatening to smother many sessile ornamental organisms in the tank.
When we hear of 'bubble algae', one reflex is to think of the infamous "Valonia ventricosa", without even considering the many other algae that form bubble-like structures. Premature judgment can be regrettable, but there is this added twist: the much-cited 'Valonia' of our nightmares is no longer Valonia, but, thanks to Olsen & West (1988) now has its own Genus, Ventricaria.
That deft taxonomic adjustment aside, there still should be no bar to our tentatively identifying the bubbles of our troubles. Proper identification can lead to a more accurate perception in the hobby of which algae are common problems, rare nuisances, or even benevolent guests. In some cases proper identification can tell us how to best combat a problem alga. With some bias towards species found in my corner of the world (the Philippine Islands) I have selected some 'bubble algae' for description, and hopefully, differentiation.
Selected Descriptions
-Ventricaria ventricosa is the most infamous of the bunch. It bears a single, fluid-filled, and nearly spherical bladder of a thallus (or 'body'). To say that the bladder or vesicle is 'single' simply means it does not branch off 'daughter' bladders; each and every bladder has its own anchorage on the substrate. The bladders, which are single cells each, can grow to nearly 2 inches in diameter, and can appear to have a curious sheen, especially when underwater, that can almost conceal its dark green color. The optical effect derives from the parallel arrangement of cellulose micro-fibrils in the vesicle's wall, and the near-crystalline state of the cellulose, similar to the same way that 'star' and 'cat's-eye' gemstones create their chatoyant sheen. The cell wall's toughness, smoothness, and the sheer size of the bladder, discourage many grazing herbivores from obtaining suitable purchase. Its anchorage to substrate can be surprisingly strong. The species is found around the Indian Ocean into the Pacific, as far east as the Samoas and as far south as Australia, as well as throughout the Caribbean. It is notorious for its tolerance of very low light levels.
-Boergesenia forbesii is often found as large single bladders that at full size can look almost like shiny, bite-size, clear-green hotdogs. These vesicles grow to around 2 inches length and up to nearly an inch in width. This alga does not restrict itself to rocky substrate, and is easily found epiphytic -that is to say, living on other plants like sea-grass or sturdy algae. It seems to have a less sturdy vesicle wall than fellow giant, V. ventricosa. The image to the left shows young vesicles, only half an inch long; the brown lump in the foreground is the remains of a larger, spent vesicle, which peaked at about an inch-and-a-fourth in length. Interestingly, Trono (1997) singles out the species as a good bio-indicator for marine radioactive pollution, but does not elaborate if it is merely superior at assimilating radionuclides that can be revealed by assay of samples, or if (less likely) the alga actually exhibits geographic affinity with radioactive concentrations.
-Valonia aegagropila forms small, densely packed, single-cell bladders with a tendency towards a long, distorted, curved-sausage shape. The dark- to olive green, clear vesicles, grow to about ½ inch length and maybe 1/6 inch width. The vesicles are NOT singular, branching off into successive tiers of bladders, up to five sprouting from the top of each. This branching can be difficult to detect visually, given the often very tight clustering of the vesicles. This alga is found widespread in the Western Pacific from Australia up to Japan, throughout the Indian Ocean and the Caribbean, about the Canary Islands in the Atlantic and into the Mediterranean The dense packing of vesicles can make careful manual removal of them difficult, though the anchorage to substrate is only moderate on strength.
-Valonia fastigiata also features small, 'branching' unicellular vesicles, with a lesser tendency towards curving or distortion of shape, which ranges from clavate (club-like) to oblong, to nearly spherical. Reaching about 1/3 inch in length, the vesicle's more regular shape allows for very dense clustering. The species is found around the Indian Ocean, out to the Western Pacific, and still further eastwards to Fiji.
-Valonia macrophysa forms dark green, branching, unicellular vesicles under ½ inch thick and up to an inch or so in length. The vesicles are roughly clavate (club-shaped), with much distortion, swelling towards a usually very-rounded top end. Given the dense packing of the vesicles, only these tops are visible, and the mistaken impression of spherical vesicles is easily obtained. The species enjoys a global distribution, from the Indian Ocean through the Western Pacific into Tahiti, throughout the Caribbean, throughout the Mediterranean out to the Canary Islands in the eastern Atlantic. Relatively weak anchorage to hard substrates allows for the often-easy manual removal of several vesicles at a time.
-Valonia utricularis bears somewhat-curving, clavate, branching vesicles sometimes reaching 2 inches in length but usually only ¼ inch thick. These vesicles tend to be clustered loosely, many vesicles lying nearly prone and thence sending out upright vesicles, thus their elongated shape is easier to perceive. This alga shares geographical distribution with V. macrophysa, and indeed, there are suggestions that the two are actually manifestations of a single, polymorphic species. Anchorage is relatively weak (except on highly convoluted, hard substrate), but the prone position of vesicles increases the chance of rupture when attempting the removal of whole clumps of vesicles.
-Dictyosphaeria cavernosa forms a bladder-like, grainy-textured, multi-cellular thallus easily an inch across, which can be sub-spherical but more often irregular in shape. When the large bladder inevitably ruptures on maturity, the small (3 mm) cells that comprised its wall can themselves be mistaken for a nascent vesicles of other bubble algae species. A tough skin on every one of those small cells, and very strong anchorage somewhat makes up for cell sizes that can allow many herbivores an easy grip. The image shows several ruptured thalli, and the many small 'bubbles' seen are the cells that made up the thallus walls. A young bladder is forming in the topmost center of the photo. This alga is susceptible to overgrowth by sponges and by other algae. Its geographic distribution ranges from around the Indian Ocean to the Western Pacific up to Polynesia, as well as throughout the Caribbean. A similar-looking species with similar distribution, Dictyosphaeria versluysii forms grainy, somewhat flattened, multi-cellular bladders
-Bornetella sphaerica forms single, grape-like, multicellular bladders sporting a hexagonal array of lighter blotches across the sturdy surface. These markings correspond to the ends of interior filaments radiating from a vertical spine-like axis within the vesicle. The vesicle itself grows to just over 1/3 of an inch in diameter. The internal framework of filaments, which lends the alga a surprising resilience, forms as the vesicle approaches sexual maturity -not surprising since the filaments bear spore-bearing structures. The species is found in the Western Pacific, from Japan down south to the Philippines, and eastward to Hawaii and Fiji. Two other species of Bornetella, B. nitida and B. oligospora, form singular, elongated vesicles up to two inches long and 1/5 inch thick. Mature bladders again feature the internal axis that radiates filaments out to a lightly calcified bladder wall. These two algae are chiefly distinguished from one another by an internal characteristic: the number of sexual structures on the tiny internal filaments. They can be confused at first glance with Merman's Finger algae (Neomeris spp.) and are found in the Western Pacific, from Japan to as far south as Australia, and as far East as Fiji.
-Colpomenia sinuosa forms large multi-cellular thalli that are first solid and then become hollow and often rather contorted, easily up to two inches in diameter, with some specimens reaching 8 inches. The yellow to yellow-brown thalli have broad but weakly moderate anchorage to hard substrate, and a very thick wall. The reproductive structures are found in tiny pits scattered across the thallus exterior. This species boasts of a remarkable global distribution, even into the Antarctic, with a notable absence from the northeastern U.S. seaboard and the Arctic.
-Colpomenia bullosa is normally found in the cold Northern Pacific from Japan and China to Alaska, but there is at least one tropical record (in Vietnam). The species produces bunches of eventually-hollow, upright structures somewhat resembling distorted, dirty-yellow chili peppers, sprouting from a shared holdfast complex.
(CONT. PART-2)
To the reef aquarium hobbyist, one of the rudest of surprises is to be confronted with an aggressive outbreak of 'bubble algae' in the tank. In the right conditions, they multiply and spread rapidly, offering good resistance to many herbivores, while threatening to smother many sessile ornamental organisms in the tank.
When we hear of 'bubble algae', one reflex is to think of the infamous "Valonia ventricosa", without even considering the many other algae that form bubble-like structures. Premature judgment can be regrettable, but there is this added twist: the much-cited 'Valonia' of our nightmares is no longer Valonia, but, thanks to Olsen & West (1988) now has its own Genus, Ventricaria.
That deft taxonomic adjustment aside, there still should be no bar to our tentatively identifying the bubbles of our troubles. Proper identification can lead to a more accurate perception in the hobby of which algae are common problems, rare nuisances, or even benevolent guests. In some cases proper identification can tell us how to best combat a problem alga. With some bias towards species found in my corner of the world (the Philippine Islands) I have selected some 'bubble algae' for description, and hopefully, differentiation.
Selected Descriptions
-Ventricaria ventricosa is the most infamous of the bunch. It bears a single, fluid-filled, and nearly spherical bladder of a thallus (or 'body'). To say that the bladder or vesicle is 'single' simply means it does not branch off 'daughter' bladders; each and every bladder has its own anchorage on the substrate. The bladders, which are single cells each, can grow to nearly 2 inches in diameter, and can appear to have a curious sheen, especially when underwater, that can almost conceal its dark green color. The optical effect derives from the parallel arrangement of cellulose micro-fibrils in the vesicle's wall, and the near-crystalline state of the cellulose, similar to the same way that 'star' and 'cat's-eye' gemstones create their chatoyant sheen. The cell wall's toughness, smoothness, and the sheer size of the bladder, discourage many grazing herbivores from obtaining suitable purchase. Its anchorage to substrate can be surprisingly strong. The species is found around the Indian Ocean into the Pacific, as far east as the Samoas and as far south as Australia, as well as throughout the Caribbean. It is notorious for its tolerance of very low light levels.
-Boergesenia forbesii is often found as large single bladders that at full size can look almost like shiny, bite-size, clear-green hotdogs. These vesicles grow to around 2 inches length and up to nearly an inch in width. This alga does not restrict itself to rocky substrate, and is easily found epiphytic -that is to say, living on other plants like sea-grass or sturdy algae. It seems to have a less sturdy vesicle wall than fellow giant, V. ventricosa. The image to the left shows young vesicles, only half an inch long; the brown lump in the foreground is the remains of a larger, spent vesicle, which peaked at about an inch-and-a-fourth in length. Interestingly, Trono (1997) singles out the species as a good bio-indicator for marine radioactive pollution, but does not elaborate if it is merely superior at assimilating radionuclides that can be revealed by assay of samples, or if (less likely) the alga actually exhibits geographic affinity with radioactive concentrations.
-Valonia aegagropila forms small, densely packed, single-cell bladders with a tendency towards a long, distorted, curved-sausage shape. The dark- to olive green, clear vesicles, grow to about ½ inch length and maybe 1/6 inch width. The vesicles are NOT singular, branching off into successive tiers of bladders, up to five sprouting from the top of each. This branching can be difficult to detect visually, given the often very tight clustering of the vesicles. This alga is found widespread in the Western Pacific from Australia up to Japan, throughout the Indian Ocean and the Caribbean, about the Canary Islands in the Atlantic and into the Mediterranean The dense packing of vesicles can make careful manual removal of them difficult, though the anchorage to substrate is only moderate on strength.
-Valonia fastigiata also features small, 'branching' unicellular vesicles, with a lesser tendency towards curving or distortion of shape, which ranges from clavate (club-like) to oblong, to nearly spherical. Reaching about 1/3 inch in length, the vesicle's more regular shape allows for very dense clustering. The species is found around the Indian Ocean, out to the Western Pacific, and still further eastwards to Fiji.
-Valonia macrophysa forms dark green, branching, unicellular vesicles under ½ inch thick and up to an inch or so in length. The vesicles are roughly clavate (club-shaped), with much distortion, swelling towards a usually very-rounded top end. Given the dense packing of the vesicles, only these tops are visible, and the mistaken impression of spherical vesicles is easily obtained. The species enjoys a global distribution, from the Indian Ocean through the Western Pacific into Tahiti, throughout the Caribbean, throughout the Mediterranean out to the Canary Islands in the eastern Atlantic. Relatively weak anchorage to hard substrates allows for the often-easy manual removal of several vesicles at a time.
-Valonia utricularis bears somewhat-curving, clavate, branching vesicles sometimes reaching 2 inches in length but usually only ¼ inch thick. These vesicles tend to be clustered loosely, many vesicles lying nearly prone and thence sending out upright vesicles, thus their elongated shape is easier to perceive. This alga shares geographical distribution with V. macrophysa, and indeed, there are suggestions that the two are actually manifestations of a single, polymorphic species. Anchorage is relatively weak (except on highly convoluted, hard substrate), but the prone position of vesicles increases the chance of rupture when attempting the removal of whole clumps of vesicles.
-Dictyosphaeria cavernosa forms a bladder-like, grainy-textured, multi-cellular thallus easily an inch across, which can be sub-spherical but more often irregular in shape. When the large bladder inevitably ruptures on maturity, the small (3 mm) cells that comprised its wall can themselves be mistaken for a nascent vesicles of other bubble algae species. A tough skin on every one of those small cells, and very strong anchorage somewhat makes up for cell sizes that can allow many herbivores an easy grip. The image shows several ruptured thalli, and the many small 'bubbles' seen are the cells that made up the thallus walls. A young bladder is forming in the topmost center of the photo. This alga is susceptible to overgrowth by sponges and by other algae. Its geographic distribution ranges from around the Indian Ocean to the Western Pacific up to Polynesia, as well as throughout the Caribbean. A similar-looking species with similar distribution, Dictyosphaeria versluysii forms grainy, somewhat flattened, multi-cellular bladders
-Bornetella sphaerica forms single, grape-like, multicellular bladders sporting a hexagonal array of lighter blotches across the sturdy surface. These markings correspond to the ends of interior filaments radiating from a vertical spine-like axis within the vesicle. The vesicle itself grows to just over 1/3 of an inch in diameter. The internal framework of filaments, which lends the alga a surprising resilience, forms as the vesicle approaches sexual maturity -not surprising since the filaments bear spore-bearing structures. The species is found in the Western Pacific, from Japan down south to the Philippines, and eastward to Hawaii and Fiji. Two other species of Bornetella, B. nitida and B. oligospora, form singular, elongated vesicles up to two inches long and 1/5 inch thick. Mature bladders again feature the internal axis that radiates filaments out to a lightly calcified bladder wall. These two algae are chiefly distinguished from one another by an internal characteristic: the number of sexual structures on the tiny internal filaments. They can be confused at first glance with Merman's Finger algae (Neomeris spp.) and are found in the Western Pacific, from Japan to as far south as Australia, and as far East as Fiji.
-Colpomenia sinuosa forms large multi-cellular thalli that are first solid and then become hollow and often rather contorted, easily up to two inches in diameter, with some specimens reaching 8 inches. The yellow to yellow-brown thalli have broad but weakly moderate anchorage to hard substrate, and a very thick wall. The reproductive structures are found in tiny pits scattered across the thallus exterior. This species boasts of a remarkable global distribution, even into the Antarctic, with a notable absence from the northeastern U.S. seaboard and the Arctic.
-Colpomenia bullosa is normally found in the cold Northern Pacific from Japan and China to Alaska, but there is at least one tropical record (in Vietnam). The species produces bunches of eventually-hollow, upright structures somewhat resembling distorted, dirty-yellow chili peppers, sprouting from a shared holdfast complex.
(CONT. PART-2)